Une
loi exponentielle correspond au modèle suivant:
X est une Variable aléatoire définissant la durée de vie d'un phénomène. Si l'espérance de vie du phénomène est E(X) et si la durée de vie est sans vieillissement, c'est-à-dire si la durée de vie au-delà de l'instant T est indépendante de l'instant T, alors X a pour densité de probabilité :
- f (t) = 0 si t < 0 *
f (t) = | 1 ––––––– E (X) | e - | t – – – – – – – E ( X ) | |
pour tout t ≥ 0.
On dit que X suit une loi exponentielle de paramètre
De façon plus formelle on peut caractériser la loi exponentielle de la façon suivante:
∀ (s, t) ∈ R + 2 , P(X>s+t|X>t) = P(X>s)
Une loi à valeurs dans R + qui vérifie cette propriété est alors exponentielle et toute loi exponentielle vérifie cette probabilité. Cette propiété traduit l'absence de mémoire de la loi exponentielle. Par exemple, la probabilité qu'un phénomène se produise entre les temps t et t+s s'il ne s'est pas produit avant est la même que la probabilité qu'il se produise entre les temps 0 et s. On peut oublier l'instant de départ pour modéliser la probabilité. Cette caractérisation est importante car elle permet de montrer que certains phénomènes peuvent être modélisés par une distribution exponentielle. Cette loi permet entre autre de modéliser la durée de vie de la radioactivité ou d'un composant électronique.
Calcul de P(X > t)
Si on appelle F(t) la probabilité que la durée de vie soit supérieure à t, le fait que la durée de vie soit sans vieillissement se traduit par l'égalité suivante:
F (T+t) ––––––––– F (T) | = F (t) |
Puisque la fonction F est continue à droite en tout point, cette équation implique que F est une fonction Exponentielle.
Il existe donc k réel tel que pour tout t :
F (t) = e kt .
La densité de probabilité est alors f telle que :
f (t) = k e - k t pour tout t ≥ 0.
Le calcul de l'espérance de X, qui doit valoir E(X) conduit à l'équation:
∫ | + ∞ 0 | -kt.e kt .dt = E (X) |
On calcule l'intégrale en intégrant par parties ; on obtient : k = - | 1 ––––––– E (X) | = - λ |
.
Donc P (X > t) = e - | t – – – – – – – E ( X ) | |
Espérance, variance, écart type, médiane
Si X est une variable aléatoire qui suit une loi exponentielle de paramètre λ
Nous savons, par construction, que l'espérance de X est .
On calcule la variance en intégrant par parties ; on obtient : .
L'écart type est donc
La médiane, c'est-à-dire le temps T tel que P(X>T) = 0,5, est ln(2) ––––––– λ | = E (X) ln(2) |
.
Ci-contre est représentée la densité d'une durée de vie d'espérance 10 de loi exponentielle ainsi que sa médiane.
Champ d'application
Un domaine privilégié de la loi exponentielle est le domaine de la
Radioactivité (
Rutherford et Soddy). Chaque atome radioactif possède une durée de vie qui suit une loi exponentielle. Le paramètre λ s'appelle alors la
constante de désintégration.
La durée de vie moyenne s'appelle le temps caractéristique.
La loi des grands nombres permet de dire que la concentration d'atomes radioactifs va suivre la même loi. La médiane correspond au temps T nécessaire pour que la population passe à 50% de sa population initiale et s'appelle la Demi-vie ou période.
On modélise aussi fréquemment la durée de vie d'un composant électronique par une loi exponentielle.
Durée de vie minimale
Si les variables aléatoires X, Y sont indépendantes et suivent deux lois exponentielles de paramètres λ, μ, alors Z = inf(X; Y) est une variable aléatoire qui suit la loi exponentielle de paramètre λ + μ.
Cette observation est très utile pour déterminer l'espérance de vie d'un système constitué de deux composants en série.
Voir aussi